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The aim of this project

I In most HFCS countries, all variables are collected in surveys
I Variables are affected by item-non response Types of Missings

I Some of the data are not observed but imputed

I This project explores an imputation approach which
I uses tools from Machine Learning (ML)
I shares benefits of quasi-admin data with survey-only countries
I avoids collecting country-specific (non-harmonized) admin data
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Methods to impute missing items in surveys

1. Model-based
I no well-specified model for household wealth decisions
I imputed data cannot be used to estimate model parameters

2. Algorithmic
I driven by data and ’theory-free’
I sensitive to choice of algorithm

Multiple Imputation: gold standard of algorithmic method
I uses several stochastic simulations to impute specific item
I item distributions show imputation uncertainty

→ SCF and HFCS imputation follow this approach
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Item Imputation in the SCF and HFCS

I SCF: FRITZ Model
I contains a highly structured set of constraints:

Sequential : follow predetermined path through survey variables
imputing missing items

Iterative: imputed values from each previous iteration treated
as observed for consecutive iteration

I HFCS:
I most countries use FRITZ derivatives (’emir’, ...)
I but differ with respect to data collection

I 15/20: surveys (true values of missing items unknown)
I 5/20: ’quasi-admin’ data for some variables

EE, FI, FR, IE (registers); IT (contract)
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Item Imputation with Machine Learning

I In some fields, imputing missing items with ML is common
I medical science: Jerez et al [2010], Masconi et al [2015], . . .
I industrial research: Lakshminarayan et al [1996], . . .

I Why ML for imputation?
I easy comparison of many distinct algorithms ML algorithms

I allows modeling relationships without priors (theories)

I For survey imputation:
I Nordbottom [1998], Amer [2006], . . .
I Census Bureau (CPS, ASEC, ACS)

I Main challenge: ’True’ data not available
⇒ cannot train, validate, test
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HFCS imputation using ML: three step procedure

1. Create training data with true but most likely missing values

1.1 Survey: identify determinants of non-response to specific item
1.2 Quasi-admin dataset: identify hhs most likely to miss item

→ use this group as survey’s artificial counterfactual

2. Select and train algorithm using training data
I Experiment with those used in papers listed earlier

3. Apply trained algorithm to survey country
I Current imputation is benchmark to assess results
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Example: value of hh main residence (HMR; HB0900)

I Step 1: I am working on three options:

1. Decision Trees (DT; supervised ML classification method)

2. Statistical Matching

3. Item Response Theory Modelling

DT minimizes classification error using hyperparameters
I number of branches
I branching variables
I branching thresholds
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Decision Tree: Illustration for value of HMR- NEW
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HMR: Example of a Decision Tree
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HMR: Decision Tree with arbitrary splits

Classification error: 22.54%
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HMR example: steps 1 to 3 - NEW

I 1.1. and 1.2.

I Steps 2 and 3: K-Nearest-Neighbor
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HMR Example: Results

I II III IV V VI

Admin: FI Survey: FR ML Imputation
H owners H owners Training Imputed

Answered Imputed*
N 8,526 8,477 1,051 1,776 500** 1,776

µ 216 315 366 253 202 282
p50 180 225 250 167 193 231
σ 144 340 387 330 155 168

Mean, median, stdev rounded to nearest thousand Euro

*Responded: ”No answer” or ”Don’t know”; **Targeted (classification error tolerance: 32%)

I Does FR imputation underestimate HMR? (IV vs. VI)

I Does ML imputation inherit moments of FI? (V,I vs. III)
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Conclusion

I I propose an imputation procedure for missing survey items

I It aims to share benefits of country specific quasi-admin data

I Work to be done

I Check robustness of training dataset with respect to
I three approaches for step 1
I using other quasi-admin country data
I tolerance of classification error

I Account for country-specific item distributions
I Transform quasi-admin distribution?
I Adjust imputation algorithm?

I Are admin data always a better measure for HFCS variables?
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THANKS for your attention

I am grateful for comments and suggestions

Johannes.Fleck@eui.eu

mailto:Johannes.Fleck@eui.eu
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Non-response in survey data

I Survey observations are either complete or missing

I Types of missing: item non-response vs. unit non-response

ID Head Age Income Real Assets Financial Assets Classification

1 34 100,000 233,000 64,000 Complete
2 21 12,000 0 Missing (Item non-response)
3 57 459,231 Missing (Item non-response)
4 Missing (Unit non-response)
5 78 Missing (Item non-response)
6 66 45,230 120,000 330,000 Complete
7 47 78,000 450,000 0 Complete

... ... ... ... ... ...
N 39 60,000 Missing (Item non-response)

Return
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ML for imputation

Table: Imputation Algorithms - literature examples (TBC)

OUTPUTS
INPUTS categorical continuous

complete
continuous Decision Trees, Random Forest Fuzzy K-means
categorical Singular Value Decomposition
mixed Logistic Regression

missing items
continuous
categorical Nearest Neighbor
mixed Neural Networks

Return
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