Machine Learning Missing European Household Wealth

work in progress

Johannes Fleck European University Institute, Florence

SEM Conference, Frankfurt August 16, 2019

The aim of this project

In most HFCS countries, all variables are collected in surveys

- Variables are affected by item-non response
- Some of the data are not observed but imputed
- This project explores an imputation approach which
 - uses tools from Machine Learning (ML)
 - shares benefits of quasi-admin data with survey-only countries
 - avoids collecting country-specific (non-harmonized) admin data

Outline

Missing Item Imputation

ML based Imputation for the HFCS Methodology Example: Value of Household Main Residence

Conclusion

Missing Item Imputation

Methods to impute missing items in surveys

- 1. Model-based
 - no well-specified model for household wealth decisions
 - imputed data cannot be used to estimate model parameters
- 2. Algorithmic
 - driven by data and 'theory-free'
 - sensitive to choice of algorithm

Multiple Imputation: gold standard of algorithmic method

- uses several stochastic simulations to impute specific item
- item distributions show imputation uncertainty
- \rightarrow SCF and HFCS imputation follow this approach

Item Imputation in the SCF and HFCS

SCF: FRITZ Model

contains a highly structured set of constraints:

Sequential: follow predetermined path through survey variables imputing missing items

Iterative: imputed values from each previous iteration treated as observed for consecutive iteration

- ► HFCS:
 - ▶ most countries use FRITZ derivatives ('€mir', ...)
 - but differ with respect to data collection
 - 15/20: surveys (true values of missing items unknown)
 - 5/20: 'quasi-admin' data for some variables EE, FI, FR, IE (registers); IT (contract)

Item Imputation with Machine Learning

In some fields, imputing missing items with ML is common

- ▶ medical science: Jerez et al [2010], Masconi et al [2015], ...
- industrial research: Lakshminarayan et al [1996], ...
- Why ML for imputation?
 - easy comparison of many distinct algorithms

ML algorithms

- allows modeling relationships without priors (theories)
- For survey imputation:
 - Nordbottom [1998], Amer [2006], ...
 - Census Bureau (CPS, ASEC, ACS)
 - ► Main challenge: 'True' data not available ⇒ cannot train, validate, test

ML based Imputation for the HFCS

HFCS imputation using ML: three step procedure

- Create training data with true but most likely missing values
 Survey: identify determinants of non-response to specific item
 Quasi-admin dataset: identify hhs most likely to miss item

 → use this group as survey's artificial counterfactual
- 2. Select and train algorithm using training data
 - Experiment with those used in papers listed earlier
- 3. Apply trained algorithm to survey country
 - Current imputation is benchmark to assess results

Example: value of hh main residence (HMR; HB0900)

Step 1: I am working on three options:

- 1. Decision Trees (DT; supervised ML classification method)
- 2. Statistical Matching
- 3. Item Response Theory Modelling
- DT minimizes classification error using hyperparameters
 - number of branches
 - branching variables
 - branching thresholds

Decision Tree: Illustration for value of HMR- NEW

HMR: Example of a Decision Tree

Machine Learning Missing European Household Wealth

ML based Imputation for the HFCS $_{\odot O \odot \odot \odot \odot \odot \odot}$

HMR: Decision Tree with arbitrary splits

Classification error: 22.54%

HMR example: steps 1 to 3 - NEW

▶ 1.1. and 1.2.

Steps 2 and 3: K-Nearest-Neighbor

HMR Example: Results

	I	11		IV	V	VI	
	Admin: FI	Survey: FR			ML Imputation		
	H owners	H owners			Iraining	Imputed	
			Answered	Imputed*			
Ν	8,526	8,477	1,051	1,776	500**	1,776	
μ	216	315	366	253	202	282	
p_{50}	180	225	250	167	193	231	
σ	144	340	387	330	155	168	
Mean, median, stdev rounded to nearest thousand Euro							
*Responded: "No answer" or "Don't know"; **Targeted (classification error tolerance: 32%)							

- Does FR imputation underestimate HMR? (IV vs. VI)
- Does ML imputation inherit moments of FI? (V,I vs. III)

Conclusion

Conclusion

- ► I propose an imputation procedure for missing survey items
- It aims to share benefits of country specific quasi-admin data
- Work to be done
 - Check robustness of training dataset with respect to
 - three approaches for step 1
 - using other quasi-admin country data
 - tolerance of classification error
 - Account for country-specific item distributions
 - Transform quasi-admin distribution?
 - Adjust imputation algorithm?
 - Are admin data always a better measure for HFCS variables?

THANKS for your attention

I am grateful for comments and suggestions

Johannes.Fleck@eui.eu

Non-response in survey data

- Survey observations are either complete or missing
- ► Types of missing: item non-response vs. unit non-response

ID	Head Age	Income	Real Assets	Financial Assets	Classification
1	34	100,000	233,000	64,000	Complete
2	21	12,000	0		Missing (Item non-response)
3	57		459,231		Missing (Item non-response)
4					Missing (Unit non-response)
5	78				Missing (Item non-response)
6	66	45,230	120,000	330,000	Complete
7	47	78,000	450,000	0	Complete
Ν	39	60,000			Missing (Item non-response)

ML for imputation

Table: Imputation Algorithms - literature examples (TBC)

		OUTPUTS		
INPUTS		categorical	continuous	
	continuous	Decision Trees, Random Forest	Fuzzy K-means	
complete	categorical	Singular Value Decomposition		
	mixed	Logistic Regression		
	continuous			
missing items	categorical		Nearest Neighbor	
	mixed	Neural Networks		

